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Abstract 
 
This paper is intended to highlight some of the issues and provide recommendations 
regarding the appropriate application of statistical methods to the fields of engineering 
and science.  The target audience is individuals who are working to improve processes 
and product designs by understanding causal relationships.  This causality is annotated 
with the symbolic expression, Y=f (x).  A challenge is to communicate statistical 
concepts and tools to the engineering community using terminology not universally 
understood.  Definitions at the end of this paper should assist in the translation. 
 
Questions stimulating the discussion below include: What statistics are useful? What 
does it mean to apply statistics?  How does one apply statistics to their field of study?  
How should data be collected? How should data be analyzed? What statistical 
technique should be used? How are the outputs of statistical analysis interpreted? What 
does statistical significance mean? How can the data be used to predict? 
 
The application of statistical thinking and methods can greatly enhance the efficiency 
and effectiveness of any engineering or scientific study. The following list of guidelines 
provides some foundational “advice” for the appropriate application of analytical 
statistics.  The order is unimportant. 
 
The Guidelines 
 
Guideline 1: It All Depends on How the Data is Collected 
 
Sampling may be used to draw conclusions about that which already exists 
(enumerative statistics1) or to understand causality to assist in the prediction of what 
may happen (analytical statistics).  In both cases sampling implies not all items will be 
measured, only a select few (hence the word sample).  Selection of the items to be 
measured is an important decision and will provide the context for data analysis.  It 
affects not only what statistical techniques can be used for analysis, but how to interpret 
the results. 
 
Dependency on how data is collected: 
• The information revealed by data is entirely dependent on how the data is acquired 

(i.e., the sampling plan). You must first determine an appropriate sampling plan. What 
is: the sampling location, sampling frequency, subgroup size? Sampling schemes are 
designed as a function of the hypotheses stated.  They link the x’s that have been 
identified to the Y’s being measured. Have sufficient x’s been captured in the study to 
provide relevant information?   

 
• The questions that can be answered by data are entirely dependent on the sampling 

plan. Always be able to answer: What do you want to know?  What questions are you 
trying to answer? What potential sources of variation are captured in your sampling 
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plan? Which sources are exposed within subgroup?  Between subgroup? Within 
treatment of an experiment? Between treatments?  Within block of a complete block 
design?  Between blocks? Over what set of conditions (x’s) can you make operative 
interpretations from the data? 

 
• Appropriate actions are entirely dependent on the sampling plan. What actions are 

appropriate if the range chart is out-of-control?  In-control? What actions are 
appropriate if the Y-bar (x-bar) chart is out-of-control?  In-control?  What if between 
block variation in an experiment is greater than within block?  Or within level variation 
of a factor is greater than between level? 

 
• Conclusions drawn from the data and the ability to extrapolate those conclusions are 

entirely dependent on how the data was acquired. Analysis is dependent on how the 
data was acquired. The degree of confidence in the study is a function of how 
representative the study is. How representative of future conditions is the study?  Will 
the conclusions be useful in the future? What has been learned about the causal 
structure?   Has this learning occurred over a wide inference space? Or is it subject 
to limitations due to restrictions of the study? 

 
 “The engineer who is successful in dividing his data initially into rational subgroups 

based on rational theories is therefore inherently better off in the long run. . .”2 
 
Guideline 2: Investigations are Question, not Tool Driven. Statistical Techniques 

Better Enable You to Answer Engineering Questions 
 
The difference between inexperienced and skilled users of statistics becomes evident in 
the planning for the acquisition of data. Component of Variation (COV) studies and 
Designed Experiments (DOE) effectively organize or generate data to provide insight to 
hypotheses.  Inexperienced users of statistics tend to ignore the link between data 
and context and, as a result, jump directly to analysis rather than appropriately 
planning to collect the right data in the first place. For example, most organizations 
gather tremendous amounts of data and then “torture the data into submission”. The 
data analysts haphazardly run programs in the statistical software hoping to expose 
something.  What statistical tool should be used to look at the data? How can the data 
be organized to prove my hypothesis is correct? While this historical/observational data 
may be useful to develop hypotheses, it is not useful for drawing conclusions about 
causal structure. 
 
A more experienced user would, instead, start with an underlying set of questions, such 
as, what is the motivation for investigation? What are the phenomena of interest? How 
can the phenomena be quantified? Is the measurement system adequate?  How much 
do I think I know about the phenomena? What is the basis for this knowledge? What are 
the factors (x’s) affecting variation? What is the noise? From the set of questions, they 
would develop hypotheses and consider multiple ways the collection of data might 
provide insight to those hypotheses (or better yet try to find ways to provide evidence 
their hypotheses are wrong). Perhaps a statistical test would be useful, but other 
approaches might be more applicable, such as the use of variability charts or control 
chart techniques. Similarly, in reliability testing, understanding long-term product 
performance under various conditions (e.g., representative of customer usage or 
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varying installation situations) is one of the goals; making product reliability claims with 
prediction models is secondary.  
 
This shift in perspective from statistical technique to scientific investigation will likely 
change the way one approaches data collection and analysis. Yes, we want to turn the 
study into a science project. After creating a list of questions, skilled statistical thinkers 
discuss with their scientific/engineering collaborators the ways data might be collected 
to provide insight to their questions and, thus, what kinds of studies might be most 
useful. Together, they try to identify potential sources of variability and predict all 
possible outcomes of a study. This is a major reason why collaborating with statistical 
thinkers can be helpful, and also why the collaborative process works best when 
initiated early in an investigation.  Of course, having engineers capable of integrating 
the scientific process and the statistical thinking together can be a huge advantage.  
 
As Sir Ronald Fisher put it:  
 
“To consult the statistician after an experiment is finished is often merely to ask him to 

conduct a post mortem examination. He can perhaps say what the experiment died of.”3 
 
Guideline 3: Understand Variability, Variation Exists in Everything 
 
All measurements, provided adequate discrimination, exhibit variation. Every number 
obtained from the data would change somewhat, even if the measurements were 
repeated on the same sample. If a new lot of material is introduced, there may be an 
increase in variation due to the natural variability of the raw materials. If data is collected 
with a different set-up, from a different machine, or under different ambient conditions, 
there are more potential sources of variability to be accounted for. In the manufacture of 
coatings, batch effects (e.g., lot-to-lot variation of raw materials) may introduce extra 
variability. Identifying the potential sources of variability is invaluable for planning the 
investigation.  
 
Understanding the amount of variability and what creates it is central to the discipline of 
analytical statistics. Variability is both expected and challenging to explicate. To find 
associations between x’s and Y’s, x’s need to vary while the Y’s are measured. For 
example, to determine if mold temperature is associated with polymer chain length and 
so dimensional shrinkage of an injection molded part, mold temperature will need to 
vary in the study (either naturally over time or through manipulation in a designed 
experiment); Analytical statistics aim to evaluate the data and to assist in partitioning 
and assigning such variation. At times variability may also limit discovery such as when 
measurement precision (gage variation when measuring the same characteristic 
multiple times) is so poor product variation cannot be assessed. 
 
It is recommended, if the problem is one of variation, the response variable (Y) be a 
measure of variation.  A range, standard deviation, variance or some transformation 
may be useful.  For experimentation this will likely mean some sort of nested4 layer of 
repeats within treatment. 
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Guideline 4: Plan and Predict 
 

“Dans les champs de l'observation le hasard ne favorise que les esprits 
prepares5”  

Roughly, chance favors the prepared mind. 
 
Thoughtful data collection can greatly simplify analysis and make it more precise. When 
substantial effort (i.e., time and money) will be involved in collecting data, statistical 
issues may not be addressed in a question such as; What is the correct sample size? 
Sample size is seldom the right question for an analytical problem.  More appropriately, 
is the sample representative of future considerations; what the engineer wants to 
observe and draw conclusions over? Rather than focusing on a specific detail in the 
design of the experiment, someone with statistical experience is likely to step back and 
consider many aspects of data collection in the context of overall goals and may start by 
asking; What would be the possible outcomes of the sampling plan, and how would the 
data be interpreted? What could be done with this information?  What if the hypotheses 
are wrong? How likely is this experiment representative of future conditions? How will 
this information increase understanding of the phenomena and the causal structure? 
What will the next iteration of study look like? 
 
In trying to determine the relationship between x’s and Y’s, key issues involve: 
 

• Hypotheses as to why the x’s might affect the Y’s (see Thought Maps6) 
• Understanding of the amount of change in Y’s that is of engineering or scientific 

interest (i.e., practical significance), 
• The way x and Y are measured (measurement uncertainty and discrimination),  
• The extent to which the measurements represent the underlying causal 

relationships of x and Y (Have both varied enough during the study?),  
• The ability to identify and account for the multitude of factors (perhaps 

confounded) that could affect the measurements, and  
• Whether some of those factors might introduce systematic errors (bias) or act 

specially (the nature of the variability). 
 
To assist in planning and linking the x’s to the Y’s, tools such as Process & Product 
Maps7 have proven useful.  The maps help to identify and keep track of the plethora of 
x’s captured in any study. Asking questions and making predictions at the design stage 
can save headaches at the analysis stage. Prediction involves the abstraction of 
hypotheses to estimate at least three things: 
 

1. The data for each instance of when the data will be collected (treatment of a 
DOE or sampling point in a sampling plan).  This is useful to consider the 
reasonableness of the study and to get an estimate of your current state of 
knowledge (actual – predicted), essentially residuals based on engineering 
predictions rather than a mathematical model8. 

2. ALL possible outcomes.  This is a finite set of potential outcomes, and predicting 
all outcomes helps to mitigate bias in interpreting data. 

3. Next steps in the investigation.  All scientific and engineering study is iterative.  
Contemplating the next course of action ensures a thoughtful plan and the 
appropriate preparation for the data collection process. 
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Sampling Trees9 and Factor Relationship Diagrams10 are excellent tools to assist in 
planning and subsequent analysis.  They link the data collected to the hypotheses 
described on a Thought Map and the x’s identified on a Process Map.  They provide 
context for the analysis of the data. 
 
Guideline 5: Keep It Simple and Sequential Stupid [sic] 
 
Said multiple ways:  
 

"We are to admit no more causes of natural things than such as are both true and 
sufficient to explain their appearances."11,  

 
"Pluralitas non est ponenda sine necessitate."12 

 
All things being equal, the simplest explanation is the best. This guideline has been 
included in operating procedures across many fields. This principle of economy can be 
a useful guide. Do not try to do everything in one plan.  The likelihood your first plan 
captures everything you will need to know is close to zero.  “The first sampling plan is 
intended to help design a better sampling plan.”13 It is recommended to start with simple 
approaches and only add complexity as needed. When building mathematical models, 
start with first order terms and add order as necessary (following the Effect Sparsity14 
and Effect Hierarchy15 Principles and also implied by Taylor series order). Interactions 
among explanatory x’s, nonlinear mechanisms, missing data, confounding, sampling 
biases, measurement error and so on, can all complicate the ability to create a simple 
useful model. 
 
It is suggested to start investigations by first determining where to work and the nature 
of the phenomena.  Which set of x’s provides greater opportunity for understanding the 
causal structure? Are the phenomena special or common16? Partitioning the x’s, 
comparing and assessing leverage of each set of x’s improves the efficiency of the 
study.  Provided the study will be iterative, “It is better to confound, than restrict.”17 
Restricting factors in a study provides no opportunity to learn about their effects and 
constrains the inference space (impacting extrapolation of results). Typically 
investigations start far from optimum and the initial work is to move in the direction of 
optimum. The study often proceeds by developing a first order, linear model. Linear 
models work well as a first approximation or as a depiction of a general trend, especially 
when the amount of noise in the data makes it difficult to distinguish between linear and 
nonlinear relationships. The appropriateness of the model should be evaluated over the 
duration of the study. Keep in mind a good sampling plan, implemented well, can often 
allow simple methods of analysis to produce excellent results. Simple models help us to 
create order out of complexity, are more useful for prediction and are well suited for 
communication to others. 
 
Guideline 6: Statistical Analysis Requires Interpretation from the Lens of the 

Engineer or Scientist 
 
“Results of a well planned experiment are often evident using simple graphical analysis. 

However the world’s best statistical analysis cannot rescue a poorly planned 
experimental program.”18 
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Every accomplished statistical thinker:  

• looks at the data for obvious patterns, outliers, special causes, etc., 
• compares the data to the predicted results, and  
• then makes appropriate comparisons (e.g., for sampling, between subgroups to 

within subgroups of x’s, for DOE, mean square of the model to mean square 
error estimates).  

 
This process of data analysis often involves a multitude of outputs of statistical 
procedures, including many plots and graphs and a host of quantitative tables. These 
need to be interpreted. Once the data have been organized into an appropriate format, 
have a look!  
 

“You can observe a lot by just watching”19. 
 
Ross’ Rules of Analysis20 suggest the following sequence, in this order, of steps to 
analyze data:  

1. Practical View the data from the perspective of the engineer.  Does it make 
sense? (e.g., practical significance, patterns, comparisons with predictions),  

2. Graphical Use charts and plots to look for patterns (e.g., variability, control 
charts, normal plots, Pareto chart of effects, scatter plots, etc.), then  

3. Quantitative Augment analysis with statistical procedures and tests (e.g., 
ANOVA, regression, et. al.) 

 
Analysis for understanding causality is all about the recognition of patterns showing the 
association between x’s and Y’s.  Statistical analysis is useful for two reasons:  

1. Help to distinguishing difficult to see patterns, and  
2. Help to prevent accepting patterns that aren’t really there (i.e., random, 

unassignable variation).  
Variability and moving range (MR) charts can reveal data quality issues and outliers.  
Most studies in engineering and science are evolutionary.  We are trying to expand the 
inference of the current set of knowledge.  It is this constant iteration that drives 
continuous improvement. It is also important to acknowledge the specific ways data are 
selected prior to formal analyses and to consider how such selection might affect 
conclusions. And to remember using a single set of data to both generate and test 
hypotheses is inappropriate. 
 
A starting point for many statistical procedures is to introduce theoretical models.  
These models are functions of engineering hypotheses, rooted in the natural sciences 
(e.g., first principles, laws of physics).  For example, an engineer might hypothesize that 
oven temperature (Y), may be affected by (functional relationship) cavity geometry and 
air flow (the result of the location and speed of fans):  Expressed mathematically, Y = 
f(x1, x2) where in this case: 
 

Y = oven temperature 
x1 = cavity geometry 
x2 = air flow 

 
Rating the qualitative aspects of a product21 (e.g., taste tests using an ordinal scale) 
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may vary across the set of evaluators, and the statistical thinker may want to 
understand whether those ratings are consistent or biased.  Graphs such as variability 
charts or a time series of the data would be useful. A control chart might be used to 
understand the relationship between the measurements in time series and related 
changes in the x’s and thus provide insight into the underlying causal structure.  
 
Using hypotheses as a basis, the sampling plan specifies the way different sets of x’s 
get combined to create the variation in the Y being measured. Understanding what the 
x’s are doing in the study (i.e., restricted, confounded or separated) is a fundamental 
step and makes statistical inferences possible. Predicting changes in response 
variables in terms of theoretical models has proven to be an effective simplification 
allowing for the variability in data to be captured in order to understand the causal 
structure. 
 
Deming first differentiated enumerative from analytical problems in statistics22. While 
enumerative statistics may be useful to describe a data set that already exists, it is 
useless for prediction in and of itself.  While enumerative statisticians have largely 
developed useful statistical software, the software only provides tools to assist 
analyses.  The software cannot interpret the outputs, nor can it help to extrapolate 
those results without context. The context is critical, and the key to principled statistical 
analysis is to bring analytic methods into close correspondence with scientific or 
engineering questions and hypotheses. An engineer will likely want to consider the 
fundamental issue of whether the analytic technique is appropriately linked to the 
questions being asked. Don’t turn engineering off!  Engineering heuristic is vital. The 
outputs of the software need interpretation.  How can these outputs be explained by the 
hypotheses?  Do we need to modify, drop or add hypotheses?  If there are no rational 
explanations, perhaps the data should be questioned. 
 
Guideline 7: Question and Evaluate the Integrity of the Data  
 
The commonest of defects in designed experiments are (paraphrased from Daniel23): 

1. Oversaturation: too many effects for the number of treatments 
2. Overconservativeness: too many observations for the desired estimates 
3. Failure to study the data for bad values 
4. Failure to take into account all of the aliasing 
5. Imprecision due to misunderstanding the error variance 

 
There are two aspects of this guideline: 
 

A. Always question the measurement system.  Just because it is reporting a number 
does not mean the number is meaningful.  Traditional gage R&R studies are 
ineffective at providing an answer to the most important question:  Is the 
measurement system capable of providing insight into your hypotheses?  This 
requires due diligence in collecting samples representative of the variation of 
interest.  These form the basis for comparison to the measurement component of 
variation.  Of course, as the study iterates, and the sources of variation of interest 
change and the question of measurement capability/adequacy returns. 

 
B. Experienced experimenters understand instinctively when it comes to data 

analysis, “garbage in = garbage out.” Performing diagnostics on the data set to 
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determine the extent to which statistical assumptions are violated is imperative 
for proper quantitative analysis. Further effort to organize the data may be 
needed prior to analysis. This is variously called “cleaning up or scrubbing the 
data”. Hands-on experience can be extremely useful, as data scrubbing often 
reveals important concerns about data integrity, what was measured was indeed 
what was intended to be measured (Does it match the data collection plan?) and, 
therefore, ensuring that appropriate analysis and conclusions are made. 

 
It is imperative to plan how the data will be collected and to predict the possible results. 
Why might some data be missing, special or incomplete? Is the study reasonable? Did 
the data get modified through some relevant mechanism? Understanding such 
mechanisms can help to avoid some misleading results. For example, in a study to 
understand what factors affect the performance of a cooking grill, recognition of the 
noise due to variation in the materials being grilled is critical.  When x’s change, 
unplanned or unaccounted for, during the study they may bias the data set resulting in 
inappropriate analyses and conclusions. 
 
The beauty of practical and graphical analysis is their robustness to the required 
assumptions for quantitative analysis. If, however you intend to use quantitative analysis 
techniques, the validity of the assumptions needs to be assessed. The most common 
quantitative statistical methods involve an assumption of normally and independently 
distributed residuals with a mean of zero and a constant variance, NID(0, s2). This 
seems reasonable once you have a working mathematical model, but may not be if you 
don’t. Randomization attempts to increase the likelihood this assumption is not violated, 
but randomization may make it more difficult to assign causality. So what do you do 
when you only have hypotheses regarding what the model might be? Quantitative 
analysis should be used carefully and when appropriate.  
 
When measurements are made across time, for example, methods appropriate for 
analysis of the time series need to be considered. In addition to nonlinearity and 
statistical dependence, missing data, systematic biases in measurements, 
multicollinearity, and a variety of other factors can cause violations of statistical 
modeling assumptions. Widely available statistical software makes it easy to perform 
analyses without careful attention to inherent assumptions, and this risks inaccurate, or 
even misleading, conclusions. ANOVA can be used, inappropriately, to assess p-values 
on a data set that contains special cause variation (e.g., outliers). It is therefore 
important to understand the assumptions embodied in the methods you are using and to 
understand and assess those assumptions. At a minimum, you will want to check how 
well your statistical model fits the data. Does it make sense from a scientific/engineering 
perspective? Visual displays and plots of data and residuals from fitting are helpful for 
evaluating the relevance of assumptions and the fit of the model.  Basic techniques for 
assessing model fit (e.g., the R2 and R2 adjusted24 delta) are available in most statistical 
software.  
 
Guideline 8: Have a Strategy to Learn About and Handle Noise 
  

“Block What You Can, Randomize What You Cannot” (G.E.P. Box25) 
 
Robustness is the quality of consistent product or process performance in the face of 
noise. The identification and understanding of noise is an opportunity to increase the 
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robustness of your products. Noise must be included and varied in studies to 
understand robustness, not held constant. 
 
There are a number of ways to handle noise during the data collection process.  For 
most of them, the strategy is to partition the noise in some sensible way to allow for 
better precision in detecting significant effects. This needs to be done while not 
negatively affecting the inference space of the study. A host of techniques such as 
blocking, efficiency split-plots, cross-product arrays and nesting (e.g., inside treatments) 
are affective at accomplishing this. 
 
Leonardo da Vinci  
 

“Before you make general rule of this case, test it two or three times and observe 
whether the tests produce the same effects.”26 

 
 
Conclusion 
 

“There are three kinds of lies: lies, damned lies, and statistics.”27 
 
It is true data are frequently misused to give arguments a false sense of significance. 
Knowingly misusing data or concealing important information about the way data have 
been obtained is, of course, highly unethical. Also insidious are the widespread 
instances of claims made about hypotheses based on well-intentioned yet faulty 
statistical reasoning. One of the objectives here has been to emphasize succinctly the 
problems and ways to avoid them. 
 
The primary task for engineers is to diagnose the situation, critically think about it and 
apply scientific method. Statistics is a methodology, a way of thinking to assist this 
process. Principled statistical analysis is critical in grappling with many subtle 
phenomena to ensure that nothing serious will be lost in translation and to increase the 
likelihood findings will extrapolate into the future. To achieve full fluency in this 
methodology requires years of training and practice, but the hope is these guidelines 
will provide some essential advice. 
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Definitions 
 
Analytical Statistics (aka. Inferential statistics): the application of statistical thinking and 

methods together with principles and laws of the sciences to explain and predict 
phenomena by understanding the causal structure, thus increasing the confidence in 
the extrapolation of results.   

ANOVA (ANalysis Of VAriance):  A general term referring to a calculational procedure 
for allocating the amount of variation due to each effect in a factorial experiment.  
The usual objective is to test for differences among factor levels and/or treatment 
combinations. 

Blocks: In industrial experimentation, blocks are frequently a frame where noise (x’s not 
explicitly manipulated in the experiment), can reasonably be expected to remain 
constant (or are held constant) while that part of the experiment takes place.  
Subsequent replicates are selected so that noise changes between those blocks.  In 
this manner, there is increased precision for the design factors and information 
regarding design factors is acquired across changing noise (environmental 
conditions, variation in raw materials, and other known and unknown noise 
parameters…) 

Control Charts: a graphical technique used to study a process over time.  Control charts 
are used in pairs.  One is the Range chart used to determine if the ranges (within 
subgroup) are consistent.  The other is a Y-bar or X-bar chart.  These charts are 
used to compare the between subgroup sources of variation (x’s) to the within 
subgroup sources (x’s) to determine which source has greater leverage. 

Cross Product Arrays: factorials of design factors run inside of factorial treatments of 
noise factors (also called inner and outer arrays) 

Factor Relationship Diagram (FRD): A graphical description of an experiment showing 
the relationship between manipulated factors and noise. It consists of design 
structure, unit structure and line(s) of restriction that depict partitioning of the unit 
structure. 

Physical Science (e.g., physics, chemistry): the study of natural phenomena with the 
objective of understanding causality to make useful predictions. 

Sampling Plan (Sampling Tree):  Graphical depiction of the procedure to acquire the 
units and the relationship of layers to hypotheses (thought map) and x’s 
(process/product map). 

Scientific Method: the iterative process of induction and deduction.  
Split-plot Designs: a method of handling restrictions on randomization for factorial 

designs. 
Statistics: the science of extracting information from data.  This science includes the 

collection, analysis, interpretation and communication of information based on data.   
Taylor series: a function often expressed as a polynomial whose order or degree 

increases left to right. 
Treatment or Treatment Combination:  A unique experimental condition in a factorial 

design that is defined by a specific level of each factor. 
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